1,430 research outputs found

    Entrepreneurial orientation and international performance: the moderating effect of decision-making rationality

    Get PDF
    This research examines how entrepreneurial orientation (EO) influences international performance (IP) of the firm taking into account the moderating effect of decision-making rationality (DR) on the EO–IP association. Such an investigation is significant because it considers the interplay of strategic decision-making processes supported by the bounded rationality concept in the entrepreneurship field. Drawing from a study on activities of 216 firms in the United States and United Kingdom, the evidence suggests that DR positively moderates the EO–IP association. The findings suggest that managers can improve IP by combining EO with rational (analytical) processes in their strategic decisions

    Polarization Switching Dynamics Governed by Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films

    Full text link
    A long standing problem of domain switching process - how domains nucleate - is examined in ultrathin ferroelectric films. We demonstrate that the large depolarization fields in ultrathin films could significantly lower the nucleation energy barrier (U*) to a level comparable to thermal energy (kBT), resulting in power-law like polarization decay behaviors. The "Landauer's paradox": U* is thermally insurmountable is not a critical issue in the polarization switching of ultrathin ferroelectric films. We empirically find a universal relation between the polarization decay behavior and U*/kBT.Comment: 5 pages, 4 figure

    Spin torque due to non-uniform Rashba spin orbit effect

    Full text link
    Following the early theoretical descriptions of the spin-orbit-induced spin torque [S.G. Tan et al., arXiv:0705.3502 (2007); S.G.Tan et al., Ann. Phys.326, 207 (2011)], the first experimental observation of such effect was reported by L. M. Miron et al., Nature Mater, 9, 230 (2010). We present in this article three additional spin torque terms that arise from the non-uniformity in magnetization space of the Rashba spin-orbit effect. We propose a simple Rashba gradient device which could potentially lower switching current by n orders of magnitude, where large n measures a small magnetization change.Comment: 11 pages, 1 figur

    Magnetization reversal of ferromagnetic nanodisc placed above a superconductor

    Full text link
    Using numerical simulation we have studied a magnetization distribution and a process of magnetization reversal in nanoscale magnets placed above a superconductor plane. In order to consider an influence of superconductor on magnetization distribution in the nanomagnet we have used London approximation. We have found that for usual values of London penetration depth the ground state magnetization is mostly unchanged. But at the same time the fields of vortex nucleation and annihilation change significantly: the interval where vortex is stable enlarges on 100-200 Oe for the particle above the superconductor. Such fields are experimentally observable so there is a possibility of some practical applications of this effect.Comment: 8 pages, 9 figure

    Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

    Full text link
    We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the scope of the family of SAP methods to allow iteration-index-dependent variable strings and weights and term such methods dynamic string-averaging projection (DSAP) methods. The bounded perturbation resilience of DSAP methods is relevant and important for their possible use in the framework of the recently developed superiorization heuristic methodology for constrained minimization problems.Comment: Computational Optimization and Applications, accepted for publicatio

    Electronic Structure and Magnetic Exchange Coupling in Ferromagnetic Full Heusler Alloys

    Full text link
    Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co2_2MnZ (Z = Ga, Si, Ge, Sn), Rh2_2MnZ (Z = Ge, Sn, Pb), Ni2_2MnSn, Cu2_2MnSn and Pd2_2MnSn, and the connection between the electronic spectra and the magnetic interactions have been studied. Different mechanisms contributing to the exchange coupling are revealed. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique.Comment: 9 figures, 6 table

    Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field

    Full text link
    The energy of a displaced magnetic vortex in a cylindrical particle made of isotropic ferromagnetic material (magnetic dot) is calculated taking into account the magnetic dipolar and the exchange interactions. Under the simplifying assumption of small dot thickness the closed-form expressions for the dot energy is written in a non-perturbative way as a function of the coordinate of the vortex center. Then, the process of losing the stability of the vortex under the influence of the externally applied magnetic field is considered. The field destabilizing the vortex as well as the field when the vortex energy is equal to the energy of a uniformly magnetized state are calculated and presented as a function of dot geometry. The results (containing no adjustable parameters) are compared to the recent experiment and are in good agreement.Comment: 4 pages, 2 figures, RevTe

    A Spin-Mechanical Device for Detection and Control of Spin Current by Nanomechanical Torque

    Full text link
    We propose a spin-mechanical device to control and detect spin currents by mechanical torque. Our hybrid nano-electro-mechanical device, which contains a nanowire with a ferromagnetic-nonmagnetic interface, is designed to measure or induce spin polarized currents. Since spin carries angular momentum, a spin flip or spin transfer process involves a change in angular momentum--and hence, a torque--which enables mechanical measurement of spin flips. Conversely, an applied torque can result in spin polarization and spin current.Comment: 6 pages, 2 figure

    Unravelling the developmental and functional significance of an ancient Argonaute duplication

    Get PDF
    MicroRNAs (miRNAs) base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this phylogenetic gap, we characterize the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ~600 million years. Using genetic manipulations, Argonaute-immunoprecipitations and high-throughput sequencing, we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution

    Magnetoresistance, Micromagnetism, and Domain Wall Scattering in Epitaxial hcp Co Films

    Full text link
    Large negative magnetoresistance (MR) observed in transport measurements of hcp Co films with stripe domains were recently reported and interpreted in terms of a novel domain wall (DW) scattering mechanism. Here detailed MR measurements, magnetic force microscopy, and micromagnetic calculations are combined to elucidate the origin of MR in this material. The large negative room temperature MR reported previously is shown to be due to ferromagnetic resistivity anisotropy. Measurements of the resistivity for currents parallel (CIW) and perpendicular to DWs (CPW) have been conducted as a function of temperature. Low temperature results show that any intrinsic effect of DWs scattering on MR of this material is very small compared to the anisotropic MR.Comment: 5 pages, 5 Figures, submitted to PR
    corecore